Smooth modeling of covariate effects in bisulfite sequencing-derived measures of DNA methylation

Kaiqiong Zhao

Department of Epidemiology, Biostatistics and Occupational Health,

McGill University

Bioinformatics-Biostatistics Journal Club and Research Seminar Series

University of Manitoba

December 16, 2020

Please feel free to interrupt and ask questions at any time during the talk!

- Background and motivation
- [†]New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite Sequencing)
- [‡]New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)
- *New method 3: sparseSOMNiBUS (SOMNiBUS with variable selection)

[†] Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation. *Biometrics*. Early-View

[‡] Zhao, et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using quasi-binomial mixed models with smooth covariate effect estimates.

^{*} Zhao, et.al (2020+). In preparation

Epigenetics and DNA Methylation

- change gene expression without changing DNA sequence
- can be altered by age, diet, stress and environmental exposures
- Localized abnormal methylation is a characteristic feature of many diseases

Bisulfite Sequencing & Methylation

Methylated cytosines are not converted by bisulfite treatment

http://kkorthauer.org/talks/korthauer_aisc_2018_static.pdf

Kaiqiong Zhao | Smooth modeling of DNA methylation

Motivating datasets

Methylation profiles of Rheumatoid Arthritis (RA) patients and controls (from our collaborator Dr. Marie Hudson)

T cells

12

13

- Targeted Custom Capture Bisulfite Sequencing
 - predefined genomic regions
 - 5 million CpGs
- Cell-separated blood samples

Monocytes

10

8

Small region on chromosome 4
near BANK1

123 CpGs

RA

Controls

Find associations between

- methylation patterns in each targeted region, and
- phenotypes or covariates

Challenges / Opportunities

- Read depth at CpGs varies substantially
 - Need a model that can use all available data
- Cell-type mixture affects observed methylation levels
 - Adjust for this in model
- Sequencing errors, e.g. bisulfite conversion error
 - Build a model allowing for error
- Local correlations in methylation levels
 - Opportunity for imputing missing data or poorly measured signals
 - Opportunity for modelling smooth effects along the genome

Method	regional	one- stage	count- based	read-depth variability	adjust for confounding	experimental errors
SOMNIBUS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BSmooth	\checkmark			\checkmark		
SMSC	\checkmark			\checkmark		\checkmark
dmrseq	\checkmark			\checkmark	\checkmark	
Biseq	\checkmark			\checkmark	\checkmark	
GlobalTest	\checkmark	\checkmark			\checkmark	

BSmooth: Hansen, 2012 SMSC: Lakhal-Chaieb, 2017 dmrseq: Korthauer, 2018 BiSeq: Hebestreit, 2013 GlobalTest: Goeman, 2006

An example of two-stage method

Raw data & per-sample smoothed estimates

Results from SMSC (Lakhal-Chaieb, 2017)

Genomic position (in bp)

Method	regional	one- stage	count- based	read-depth variability	adjust for confounding	experimental errors
SOMNIBUS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BSmooth	\checkmark			\checkmark		
SMSC	\checkmark			\checkmark		\checkmark
dmrseq	\checkmark			\checkmark	\checkmark	
Biseq	\checkmark			\checkmark	\checkmark	
GlobalTest	\checkmark	\checkmark			\checkmark	

Motivation: a novel one-stage method that

- collapses smoothing and testing steps into a single step
- allows for experimental errors, variable read depths and test samples with a mixture of cell types
- provides rigorous uncertainty assessment for differentially methylated regions

Background and motivation

[†]New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite Sequencing)

 [‡]New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)

[†] Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation. *Biometrics*. Early-View

[‡] Zhao, et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using quasi-binomial mixed models with smooth covariate effect estimates.

Notations

- X_{ij}: total number of reads aligned to CpG j from sample i
- Y_{ij} : observed methylated counts at CpG *j* for sample *i*. $Y_{ij} = \sum_{k=1}^{X_{ij}} Y_{ijk}$
- ► S_{ij} : true methylated counts at CpG *j* for sample *i*. $S_{ij} = \sum_{k=1}^{X_{ij}} S_{ijk}$

- t_{ij}: the genome position (in bp) for sample i at CpG j
- $Z_{1i}, Z_{2i}, \ldots Z_{Pi}$ are the *P* covariates.
- π_{ij} : the methylation proportion parameter for sample *i*, CpG *j*

SOMNiBUS[†]: Model

▶ Assume **known error parameters** *p*₀ and *p*₁,

$$p_0 = \mathbb{P}(Y_{ijk} = 1 \mid S_{ijk} = 0)$$

$$p_1 = \mathbb{P}(Y_{ijk} = 1 \mid S_{ijk} = 1).$$

Specify the model

$$S_{ij} \mid \boldsymbol{Z}_i, X_{ij} \sim \text{Binomial}(X_{ij}, \pi_{ij})$$

$$\log \left\{ \frac{\pi_{ij}}{1 - \pi_{ij}} \right\} = \beta_0(t_{ij}) + \beta_1(t_{ij}) Z_{1i} + \beta_2(t_{ij}) Z_{2i} + \ldots + \beta_P(t_{ij}) Z_{Pi},$$

- Smooth curves along the genome for
 - Overall methylation
 - Covariate effects

[†]R package: https://github.com/kaiqiong/SOMNiBUS.

Technical details 1: splines

Use splines for smoothing

$$\beta_{p}(t_{ij}) = \sum_{l=1}^{L_{p}} \alpha_{pl} B_{l}^{(p)}(t_{ij}) \text{ for } p = 0, 1, \dots P.$$

• Penalize roughness of effect curves $\beta_{\rho}(t_{ij})$.

$$\mathcal{L}^{\text{Penalization}} = \sum_{\rho=0}^{P} \lambda_{\rho} \int \left(\beta_{\rho}^{\prime \prime}(t) \right)^{2} dt = \sum_{\rho=0}^{P} \lambda_{\rho} \alpha_{\rho}^{T} \mathbf{A}_{\rho} \alpha_{\rho} = \alpha^{T} \mathbf{A}_{\lambda} \alpha,$$

 $\{\lambda_0, \lambda_1, \dots, \lambda_P\}$ are the smoothing parameters.

- Penalties go onto second derivatives
- P+1 penalization parameters for P covariates

E step: Calculate $\eta_{ij}^{\star} = \mathbb{E}(S_{ij} \mid Y_{ijk}; \alpha^{\star})$

M step: [‡]Maximize $Q(\alpha, \lambda \mid \alpha^*) = l(\eta^*; \alpha) - \frac{1}{2}\alpha^T A_\lambda \alpha + \frac{1}{2}\log\{|A_\lambda|_+\}$

• Estimate α given the value of λ : P-IRLS

$$\widehat{\boldsymbol{\alpha}}_{\lambda} = \operatorname*{argmax}_{\alpha} \left\{ l(\boldsymbol{\eta}^{\star}; \boldsymbol{\alpha}) - \frac{1}{2} \boldsymbol{\alpha}^{T} \boldsymbol{A}_{\lambda} \boldsymbol{\alpha} \right\}$$

Estimate λ: maximize the Laplace-approximated restrictive (or marginal) likelihood

$$\mathcal{L}^{M}(\boldsymbol{\lambda}) = \int \exp\left\{\mathcal{Q}(\boldsymbol{lpha}, \boldsymbol{\lambda} \mid \boldsymbol{lpha}^{\star})
ight\} d\boldsymbol{lpha} pprox \mathsf{Laplace}(\boldsymbol{\lambda}; \widehat{\boldsymbol{lpha}}_{\boldsymbol{\lambda}}).$$

[‡] Wood (2011), JRSSB; R package mgcv

Technical details 3: inference

- Regional tests for non-zero covariate effects
 - for each covariate, or
 - for the combined effects of multiple covariates

Penalization affects effective degree of freedom

Results in BANK1 region

$$p = 1.11e - 16$$
 $p = 6.37e - 218$

• Error parameters $p_0 = 0.003$ and $1 - p_1 = 0.1^{\ddagger}$

[‡] Prochenka.et al. (2015) *Bioinformatics*.

- Simulated dataset similar to the BANK1 example
- One "null" covariate with no effect
- Two covariates with effects like those seen near BANK1
- Simulate the observed methylated counts *Y_{ij}* from

 $Y_{ij} \mid S_{ij} \sim \text{Binomial}(S_{ij}, p_1) + \text{Binomial}(X_{ij} - S_{ij}, p_0).$

Little bias in the curve estimates

Empirical confidence interval coverages

Kaiqiong Zhao | Smooth modeling of DNA methylation

Accurate type I error rates

Simulation to evaluate power

Z = 1 curve in red (fixed) Z = 0 curve varied to give various sizes of differences

Increased power to detect DMRs

Maximum difference between curves

- With Error: $p_0 = 0.003, p_1 = 0.9$
- ▶ No Error: *p*₀ = 0, *p*₁ = 1

SOMNiBUS: Summary

Advantages

- Able to use data from many more CpGs where univariate analysis fails / power gain
- One-stage nature
- Explicitly allows for experimental errors
- Inference!

SOMNiBUS: Summary

Advantages

- Able to use data from many more CpGs where univariate analysis fails / power gain
- One-stage nature
- Explicitly allows for experimental errors
- Inference!

Room for improvements

- Its underlying binomial assumption may be overly restrictive
- It is only applicable for data with negligible (within-group) variability (such as data from inbred animal or cell line experiments)

Background and motivation

 [†]New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite Sequencing)

*New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)

[†] Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation. *Biometrics*. Early-View

[‡] Zhao, et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using quasi-binomial mixed models with smooth covariate effect estimates.

- CARTaGENE is an ongoing population-based cohort, including ~43,000 participants aged 40 to 69 years in Quebec
- The level of anti-citrullinated protein antibodies (ACPA) is a marker of rheumatoid arthritis (RA) risk that often presents prior to any clinical manifestations
- Aim: detect differentially methylated regions (DMRs) associated with ACPA

- blood samples of ACPA positive and ACPA negative subjects
 - covariate of primary interest: ACPA status
 - adjusting variables: age, sex, smoking status and cell type composition(captured by the top 4 PCs)
- two batches of data, referred to as data 1 and data 2, were collected in 2017 and 2019, respectively.

	data 1 (N =116)	data 2 (N = 102)
ACPA Positives	55	48
ACPA Negatives	61	54
Number of targeted regions (with at least 50 CpGs)	10,759	12,985

Observed dispersion in a targeted region

New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)

The same error model

$$p_0 = \mathbb{P}(Y_{ijk} = 1 \mid S_{ijk} = 0)$$

$$p_1 = \mathbb{P}(Y_{ijk} = 1 \mid S_{ijk} = 1).$$

► A quasi-binomial mixed model with the **combination** of

□ a *multiplicative* dispersion, ϕ □ an *additive* dispersion, u, (i.e. a subject-specific RE)

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_0(t_{ij}) + \beta_1(t_{ij})Z_{1i} + \beta_2(t_{ij})Z_{2i} + \ldots + \beta_P(t_{ij})Z_{Pi} + u_i, u_i \stackrel{iid}{\sim} N(0, \sigma_0^2) \mathbb{V}ar(S_{ij} \mid u_i) = \phi X_{ij}\pi_{ij}(1 - \pi_{ij})$$

Smoothness parameters to penalize the roughness of effect curves.

Kaiqiong Zhao | Smooth modeling of DNA methylation

R package: https://github.com/kaiqiong/SOMNiBUS

RE term enables flexible dispersion patterns in a region

A byproduct of introducing a subject-level RE to a model with smooth covariate effects is a regional dispersion pattern of varying degree.

Technical details 1: difficulties

- Three sets of unknown parameters
 - \Box conditional mean parameters (REs): $\mathcal{B} = (\alpha, u) \in \mathbb{R}^{N + \sum_{0}^{p} L_{p}}$
 - \Box variance component parameters: $\Theta = (\lambda, \sigma_0^2) \in \mathbb{R}^{P+2}$
 - \Box multiplicative dispersion parameter: ϕ
- ► The conditional 'distribution' of *S* | *B* is not available
- ► Joint estimation of ϕ and Θ is required, as Laplace $(\phi, \Theta; \widehat{\mathcal{B}}) \neq f(\phi)g(\Theta)$
- ► In the presence of data errors, one cannot easily estimate φ using the EM algorithm
 - $\hfill\square$ The estimating equation for ϕ is not linear in the unknown methylated counts \pmb{S}

Technical details 2: Estimation & Inference

- Use the notation of extended quasi-likelihood to write the conditional quasi-likelihood function
- Calculate Laplace-approximated marginal quais-likelihood function and its derivatives

A hybrid ES algorithm

- \Box A plug-in estimator for ϕ by exploting its relationship with the dispersion for the contaminated outcome ${\it Y}$
- \Box Estimate ${\cal B}$ and Θ using ES iterations ‡ assuming ϕ is fixed and known

Inference using the observed quasi-Fisher information

[†] Efron (1986), Jorgensen (1987), McCullagh and Nelder (1989)

[‡] Elashoff and Ryan (2004)

Both additive and multiplicative dispersion is present in the data

The distribution of estimated ϕ and σ_0^2 for the 10,759 and 12,985 regions in dataset 1 and 2, respectively.

Kaiqiong Zhao | Smooth modeling of DNA methylation

Ignoring either type of dispersion leads to inflated type I errors

dSOMNiBUS: $\phi > 0$, $\sigma_0^2 > 0$; multiplicative-dispersion-only model: $\phi > 0$, $\sigma_0^2 = 0$ SOMNiBUS: $\phi = 1$, $\sigma_0^2 = 0$; additive-dispersion-only model: $\phi = 1$, $\sigma_0^2 > 0$

Analytical v.s. bootstrap based p-values

Our inference procedure provides well-calibrated regional p-values.

Simulation

• Specify the same $\beta_{\rho}(t)$ and Z_{ρ} as paper 1.

•
$$S_{ij} \sim \text{Beta-binomial}\left(\mu_{ij} = \pi_{ij}, \rho_{ij} = \frac{\phi - 1}{X_{ij} - 1}, size = X_{ij}\right)$$

► In this way, we can always guarantee $\frac{\mathbb{V}ar(S_{ij})}{X_{ij}\pi_{ij}(1-\pi_{ij})} \equiv \phi$.

• Recall: If
$$S \sim$$
 Beta-binomial ($\mu, \rho, size = X$),

$$\mathbb{V}\mathrm{ar}(S) = \underbrace{[1 + (X - 1)\rho]}_{\text{dispersion}} \underbrace{X\mu(1 - \mu)}_{V(\mathbb{E}(Y))}.$$

The impact of dispersion $p_0 = 0.003, p_1 = 0.9$

Type I Error $p_0 = 0.003, p_1 = 0.9$

Simulation to evaluate power

Z = 1 curve in red (fixed) Z = 0 curve varied to give various sizes of differences

Power without errors: $p_0 = 0, p_1 = 1$

Power with errors: $p_0 = 0.003, p_1 = 0.9$

- an adequate representation of realistic dispersion trends in regional methylation data
- well-founded theoretical properties accounting for all (known) sources of data variability and possible experimental errors
- increased power; correct control of the type I error rate
- methodologies can be generally applied to other types of count data
 - allele-specific gene expression (ASE) measured from RNA-seq data
 - any type of count data for a more comprehensive representation of dispersion
 - varying-coefficients models in other context, e.g. temporal trend

integrate SNP information (automatic variable selection)

- covariates (eg. disease status) may influence the variability/dispersion of DNA methylation (model \u03c6(Z))
- correlated samples (additional set of random effects)

sparseSOMNiBUS

R package under development: https://github.com/kaiqiong/sparseSOMNiBU

methylation QTL mapping

Given: a set of CpGs & a set of nearby SNPs (P >> N) Output: genetic variants associated with methylation levels in the test region

sparseSOMNiBUS

• a sparsity-smoothness penalty on each functional component $\beta_{\rho}(t)$

$$J(\beta_{p}) = \lambda \sqrt{(1-\alpha)J_{1}(\beta_{p}) + \alpha J_{2}(\beta_{p})}$$

where

$$J_{1}(\beta_{p}) = \int (\beta_{p}(t))^{2} dt$$
$$J_{2}(\beta_{p}) = \int (\beta_{p}''(t))^{2} dt$$

- proximal gradient descent + backtracking line search (Rcpp)
- tunning parameters λ and α , selected by cross-validation

A simple illustration of sparseSOMNiBUS

- a methylation region with 123 CpG sites
- 5 SNPs: 1 mQTL and 4 negative controls

under the best chosen $\alpha = 0.55$

Acknowledgement

- Dr. Celia Greenwood and Dr. Karim Oualkacha
- Dr. Lajmi Lakhal-Chaieb, Dr. Aurélie Labbe
- Dr. Yi Yang
- Dr. Kathleen Klein
- Dr. Sasha Bernatsky, Dr. Marie Hudson, Dr. Inés Colmegna
- the CARTaGENE study investigators
- the participants in the CARTaGENE study

Thanks

Questions & Comments

Kaiqiong Zhao | Smooth modeling of DNA methylation

SOMNiBUS[†]: Model

48

▶ Assume **known error parameters** *p*₀ and *p*₁,

$$p_0 = \mathbb{P}(Y_{ijk} = 1 \mid S_{ijk} = 0)$$

$$p_1 = \mathbb{P}(Y_{ijk} = 1 \mid S_{ijk} = 1).$$

Specify the model

$$S_{ij} \mid \boldsymbol{Z}_i, X_{ij} \sim \text{Binomial}(X_{ij}, \pi_{ij})$$

$$\log \left\{ \frac{\pi_{ij}}{1 - \pi_{ij}} \right\} = \beta_0(t_{ij}) + \beta_1(t_{ij})Z_{1i} + \beta_2(t_{ij})Z_{2i} + \ldots + \beta_P(t_{ij})Z_{Pi},$$

• Consider basis expansion: $\beta_p(t_{ij}) = \sum_{l=1}^{L_p} \alpha_{pl} B_l(t_{ij})$ for $p = 0, 1, \dots P$.

[‡]Smoothness parameters to penalize the roughness of effect curves

$$\mathcal{L}^{\text{Smooth}} = \sum_{p=0}^{P} \lambda_{p} \int \left(\beta_{p}^{\prime\prime}(t)\right)^{2} dt = \sum_{p=0}^{P} \lambda_{p} \alpha_{p}^{T} A_{p} \alpha_{p} = \alpha^{T} A_{\lambda} \alpha,$$

[†]R package: https://github.com/kaiqiong/SOMNiBUS. [‡]Wahba (1980), Parker and Rice (1985)

Technical detail 1: E-M algorithm

Complete joint likelihood

▶ [†]Random-effect view of the smoothness penalty: $\alpha \sim MVN(\mathbf{0}, \mathbf{A}_{\lambda}^{-})$

$$I^{\text{complete}}(\boldsymbol{S}; \boldsymbol{\alpha}, \boldsymbol{\lambda}) = I(\boldsymbol{S}; \boldsymbol{\alpha}) - \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{A}_{\boldsymbol{\lambda}} \boldsymbol{\alpha} + \frac{1}{2} \log \{|\boldsymbol{A}_{\boldsymbol{\lambda}}|_{+}\}$$

E step: Calculate $\eta_{ij}^{\star} = \mathbb{E}(S_{ij} | Y_{ijk}; \alpha^{\star})$

M step: [‡]Maximize $Q(\alpha, \lambda \mid \alpha^*) = I(\eta^*; \alpha) - \frac{1}{2}\alpha^T A_\lambda \alpha + \frac{1}{2}\log \{|A_\lambda|_+\}$

Estimate α given the value of λ: P-IRLS

$$\widehat{\alpha}_{\lambda} = \operatorname*{argmax}_{\alpha} \left\{ l(\eta^{*}; \alpha) - \frac{1}{2} \alpha^{T} \mathbf{A}_{\lambda} \alpha \right\}$$

Estimate λ: maximize the Laplace-approximated restrictive likelihood

$$\mathcal{L}^{\mathcal{M}}(\boldsymbol{\lambda}) = \int \exp\left\{\mathcal{Q}(lpha, \boldsymbol{\lambda} \mid \boldsymbol{lpha}^{\star})
ight\} d oldsymbol{lpha} pprox \mathsf{Laplace}(\boldsymbol{\lambda}; \widehat{lpha}_{\boldsymbol{\lambda}}).$$

[†] Wahba (1983), JRSSB; Silverman (1985), JRSSB. [‡] Wood (2011), JRSSB; R package mgcv

Technical detail 2: Inference

- Conditional on the values of smoothing parameter
- Estimate the variance of EM estimator α̂, V, using the observed Fisher information[†]
- Hypothesis testing for a regional zero effect $H_0: \beta_p(t) = 0$.
 - Wald-type statistic

$$T_{\boldsymbol{\rho}} = \widehat{\boldsymbol{\alpha}_{\boldsymbol{\rho}}}^T \{ \boldsymbol{V_{\boldsymbol{\rho}}} \}^{-1} \widehat{\boldsymbol{\alpha}_{\boldsymbol{\rho}}} \sim \chi^2_{\tau_{\boldsymbol{\rho}}}$$

Penalization affects effective degree of freedom[‡]; τ_ρ < L_ρ = dim(α_p)

$$au_p = \sum_{l=a_p}^{b_p} (2 m{F} - m{F} m{F})_{(l,l)}, ext{ for } p = 0, 1, \dots P,$$

• **F** is the 'hat' matrix and has the form $\mathbf{F} = (\mathbb{X}^T \widehat{\mathbf{W}} \mathbb{X} + \mathbf{A}_{\widehat{\lambda}})^{-1} \mathbb{X}^T \widehat{\mathbf{W}} \mathbb{X}$

[†] Oakes, D. (1999) Direct calculation of the information matrix via the EM. JRSSB

[‡] Wood, S.N. (2013) On p-values for smooth components of an extended generalized additive model. Biometrika

dSOMNiBUS: Estimation

- ► Random-effect view of the smoothness penalty: $\alpha \sim MVN(\mathbf{0}, \mathbf{A}_{\lambda}^{-})$
- ► conditional mean parameters (REs): $\mathcal{B} = (\alpha, u) \in \mathbb{R}^{N + \sum_{0}^{P} L_{p}}$
- ► variance component parameters: $\Theta = (\lambda, \sigma_0^2) \in \mathbb{R}^{P+2}$
- multiplicative dispersion parameter: ϕ

Complete joint log-quasi-likelihood function

$$q\ell^{(\boldsymbol{S},\boldsymbol{\mathcal{B}})}(\boldsymbol{\mathcal{B}},\phi,\boldsymbol{\Theta}) = ql^{(\boldsymbol{S}|\boldsymbol{\mathcal{B}})}(\boldsymbol{\mathcal{B}},\phi) - \frac{1}{2}\alpha^{T}\boldsymbol{A}_{\boldsymbol{\lambda}}\alpha - \frac{1}{2\sigma_{0}^{2}}\boldsymbol{u}^{T}\boldsymbol{u} - \frac{1}{2\sigma_{0}^{2}}\boldsymbol{u}^{T}\boldsymbol{u} + \frac{1}{2}\log\left\{|\boldsymbol{A}_{\boldsymbol{\lambda}}|_{+}\right\} + \frac{N}{2}\log\left(1/\sigma_{0}^{2}\right) - \frac{1}{2\sigma_{0}^{2}}\log\left(1/\sigma_{0}^{2}\right) - \frac{1}{2$$

Conditional quasi-likelihood function

$$qL^{(\boldsymbol{S}|\mathcal{B})}(\mathcal{B},\phi)\propto \exp\left\{-rac{1}{2\phi}\sum_{i,j}d_{ij}\left(S_{ij},\pi_{ij}
ight)-rac{M}{2}\log\phi
ight\},$$

•
$$d_{ij}(S_{ij}, \pi_{ij}) = -2 \int_{S_{ij}/X_{ij}}^{\pi_{ij}} \frac{S_{ij} - X_{ij}\pi_{ij}}{\pi_{ij}(1 - \pi_{ij})} d\pi_{ij}$$
 is the quasi-deviance function

- \blacktriangleright This is the extended quasi-likelihood for the joint parameter (\mathcal{B},ϕ)
- It exhibits the properties of log-likelihood, with respect to both B (exact) and \(\phi\) (approximate)
- [†]The assumptions required are that ϕ be small and that $\kappa_r = O(\phi^{r-1})$

[†] Efron (1986), Jorgensen (1987), McCullagh and Nelder (1989)

dSOMNiBUS: Estimation

Marginal guasi-likelihood function

$$qL^{M}(\phi, \Theta) = \int \exp\left\{q\ell^{(\mathbf{S}, \mathbf{\mathcal{B}})}(\mathbf{\mathcal{B}}, \phi, \Theta)\right\} d\mathbf{\mathcal{B}} \approx \text{Laplace}(\phi, \Theta; \widehat{\mathbf{\mathcal{B}}}) \neq f(\phi)g(\Theta).$$

A similar E-M algorithm

Initialize $\Theta^{(0)}, \phi^{(0)}, \mathcal{B}^{(0)}$ (estimates ignoring errors); Choose $\varepsilon = 10^{-6}$; Set $\ell = 0$; repeat • E step: $\eta_{ii}^{(\ell)} = \mathbb{E}(S_{ii} \mid Y_{ii}; \mathcal{B}^{(\ell)});$ • M step: $(\mathcal{B}^{(\ell)}, \phi^{(\ell)}, \Theta^{(\ell)}) = \operatorname{argmax}_{\mathcal{B}, \phi, \Theta} \ell^{\operatorname{Joint}} (\mathcal{B}, \phi, \Theta; \eta_{ii}^{(\ell)})$. Specifically repeat Solve U(B; Θ^(s)) = 0 to obtain B^(s) using data η^(ℓ)_{ii}; Newton's update for the Laplace approximated marginal likelihood evaluated at data $\eta_{ii}^{(\ell)}$:

$$\left| \begin{array}{c} \left[(\phi, \Theta)^{(s+1)} = (\phi, \Theta)^{(s)} - \left[\nabla^2 \text{Laplace}(\mathcal{B}^{(s)}) \right]^{-1} \nabla \text{Laplace}(\mathcal{B}^{(s)}) \\ s \leftarrow s + 1; \\ \text{until } \|\mathcal{B}^{(s)} - \mathcal{B}^{(s-1)}\|_2 < \varepsilon; \\ t \leftarrow t + 1; \\ \text{until } \|\mathcal{B}^{(l)} - \mathcal{B}^{(l-1)}\|_2 < \varepsilon; \\ \text{Return } \Theta^{(l)} \mathcal{B}^{(l)}, \phi^{(l)} : \end{array} \right|_{\mathcal{S}}$$

Estimating ϕ

Likelihood-based estimator

unt

Moment-based estimator (better)

Inference for smooth covariate effects

- Estimate the variance of EM estimator α̂, V, using the observed (guasi-)Fisher information[†]
- Hypothesis testing for a regional zero effect H_0 : $\beta_p(t) = 0$.
 - Regional statistic

$$T_{\rho} = \frac{\widehat{\alpha}_{\rho}^{T} \left\{ \widehat{\mathbf{V}}_{\boldsymbol{\rho}} \right\}^{-1} \widehat{\alpha}_{\rho}}{\tau_{\rho}} \sim F_{\tau_{\rho}, M-\tau}$$

- τ_{ρ} : EDF for smooth term $\beta_{\rho}(t)$. τ : total EDF of the model
- This F null distribution relies on the assumption that $(M \tau)\hat{\phi}/\phi \sim \chi^2_{M-\tau}$, which is approximately true for moment-based dispersion estimator

[†] Elashoff and Ryan (2004) An EM algorithm for estimating equations. Journal of Computational and Graphical Statistics