Smooth modeling of covariate effects in bisulfite sequencing-derived measures of DNA methylation

Kaiqiong Zhao

Department of Epidemiology, Biostatistics and Occupational Health,

McGill University

Bioinformatics-Biostatistics Journal Club and Research Seminar Series

University of Manitoba

December 16, 2020

Please feel free to interrupt and ask questions at any time during the talk!

- \blacktriangleright Background and motivation
- \blacktriangleright [†]New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite Sequencing)
- \blacktriangleright [‡]New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)
- \triangleright *New method 3: sparseSOMNiBUS (SOMNiBUS with variable selection)

 \dagger Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation. *Biometrics*. Early-View

 $\frac{1}{4}$ Zhao. et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using quasi-binomial mixed models with smooth covariate effect estimates.

 $*$ Zhao, et.al (2020+). In preparation

Epigenetics and DNA Methylation

 \triangleright can be altered by age, diet, stress and environmental exposures

2

 \blacktriangleright Localized abnormal methylation is a characteristic feature of many diseases

Bisulfite Sequencing & Methylation

Methylated cytosines are not converted by bisulfite treatment

4

http://kkorthauer.org/talks/korthauer_aisc_2018_static.pdf

Kaiqiong Zhao | [Smooth modeling of DNA methylation](#page-0-0)

Motivating datasets

Methylation profiles of Rheumatoid Arthritis (RA) patients and controls (from our collaborator Dr. Marie Hudson)

- ▶ Targeted Custom Capture Bisulfite Sequencing
	- predefined genomic regions

Monocytes T cells

- 5 million CpGs
- \blacktriangleright Cell-separated blood samples

RA 10 12 Controls 8 13

123 CpGs

Find associations between

- \blacktriangleright methylation patterns in each targeted region, and
- \blacktriangleright phenotypes or covariates

Challenges / Opportunities

- Read depth at CpGs varies substantially
	- \triangleright Need a model that can use all available data
- Cell-type mixture affects observed methylation levels
	- \blacktriangleright Adjust for this in model
- Sequencing errors, e.g. bisulfite conversion error
	- \blacktriangleright Build a model allowing for error
- Local correlations in methylation levels
	- \triangleright Opportunity for imputing missing data or poorly measured signals
	- \triangleright Opportunity for modelling smooth effects along the genome

8

BSmooth: Hansen, 2012 **SMSC**: Lakhal-Chaieb, 2017 **dmrseq**: Korthauer, 2018 **BiSeq**: Hebestreit, 2013 **GlobalTest**: Goeman, 2006

An example of two-stage method Raw data & per-sample smoothed estimates

Results from SMSC (Lakhal-Chaieb, 2017)

Genomic position (in bp)

10

Motivation: a novel one-stage method that

- \triangleright collapses smoothing and testing steps into a single step
- \blacktriangleright allows for experimental errors, variable read depths and test samples with a mixture of cell types
- **P** provides **rigorous uncertainty assessment** for differentially methylated regions

 \blacktriangleright Background and motivation

► [†]New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite **Sequencing)**

 \blacktriangleright \ddagger New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNa of BisUlfite Sequencing)

 \dagger Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation. *Biometrics*. Early-View

 $\frac{1}{2}$ Zhao, et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using quasi-binomial mixed models with smooth covariate effect estimates.

Notations

- \triangleright X_{ii} : total number of reads aligned to CpG *j* from sample *i*
- \blacktriangleright *Y_{ij}*: observed methylated counts at CpG *j* for sample *i*. $Y_{ij} = \sum_{k=1}^{X_{ij}} Y_{ijk}$

12

 \blacktriangleright *S_{ij}*: true methylated counts at CpG *j* for sample *i*. $S_{ij} = \sum_{k=1}^{X_{ij}} S_{ijk}$

- \blacktriangleright t_{ii} : the genome position (in bp) for sample *i* at CpG *j*
- \blacktriangleright *Z*_{1*i*}, *Z*_{2*i*}, ... *Z*_{P*i*} are the *P* covariates.
- \triangleright π_{ii} : the methylation proportion parameter for sample *i*, CpG *j*

SOMNiBUS† : Model

 \triangleright Assume **known error parameters** p_0 and p_1 ,

$$
p_0 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 0)
$$

\n
$$
p_1 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 1).
$$

13

 \blacktriangleright Specify the model

$$
S_{ij} | Z_i, X_{ij} \sim \text{Binomial}(X_{ij}, \pi_{ij})
$$

$$
\log \left\{ \frac{\pi_{ij}}{1 - \pi_{ij}} \right\} = \beta_0(t_{ij}) + \beta_1(t_{ij})Z_{1i} + \beta_2(t_{ij})Z_{2i} + \ldots + \beta_P(t_{ij})Z_{Pi},
$$

- \triangleright Smooth curves along the genome for
	- \triangleright Overall methylation
	- \triangleright Covariate effects

†R package: <https://github.com/kaiqiong/SOMNiBUS>.

Technical details 1: splines

 \blacktriangleright Use splines for smoothing

$$
\beta_p(t_{ij})=\sum_{l=1}^{L_p}\alpha_{pl}B_l^{(p)}(t_{ij})\ \ \text{for}\ p=0,1,\ldots P.
$$

14

Penalize roughness of effect curves $\beta_p(t_{ij})$.

$$
\mathcal{L}^{\text{Penalization}} = \sum_{p=0}^{P} \lambda_p \int \left(\beta_p''(t)\right)^2 dt = \sum_{p=0}^{P} \lambda_p \alpha_p^T A_p \alpha_p = \alpha^T A_\lambda \alpha,
$$

 $\{\lambda_0, \lambda_1, \ldots \lambda_P\}$ are the smoothing parameters.

- \blacktriangleright Penalties go onto second derivatives
- \blacktriangleright *P* + 1 penalization parameters for *P* covariates

E step: Calculate $\eta_{ij}^{\star} = \mathbb{E}(\mathcal{S}_{ij} | Y_{ijk} : \alpha^{\star})$

15

M step: [‡]Maximize $Q(\alpha, \lambda \mid \alpha^*) = l(\eta^*; \alpha) - \frac{1}{2}$ $\frac{1}{2}\alpha^T A_\lambda \alpha + \frac{1}{2}$ $\frac{1}{2}$ log { $|A_\lambda|_+\}$

Estimate α given the value of λ : P-IRLS

$$
\widehat{\alpha}_{\lambda} = \underset{\alpha}{\text{argmax}} \left\{ I(\eta^{\star}; \alpha) - \frac{1}{2} \alpha^{\mathsf{T}} A_{\lambda} \alpha \right\}
$$

Estimate λ : maximize the Laplace-approximated restrictive (or marginal) likelihood

$$
\mathcal{L}^M(\boldsymbol{\lambda}) = \int \exp\big\{Q(\boldsymbol{\alpha},\boldsymbol{\lambda} \mid \boldsymbol{\alpha}^{\star})\big\}\ d\boldsymbol{\alpha} \approx \mathsf{Laplace}(\boldsymbol{\lambda};\widehat{\boldsymbol{\alpha}}_{\boldsymbol{\lambda}}).
$$

[‡] Wood (2011), JRSSB; R package mgcv

Technical details 3: inference

- \blacktriangleright Regional tests for non-zero covariate effects
	- \blacktriangleright for each covariate, or
	- \triangleright for the combined effects of multiple covariates

16

 \blacktriangleright Penalization affects effective degree of freedom

Results in *BANK1* region

$$
p = 1.11e - 16 \qquad p = 6.37e - 218
$$

17

Firror parameters $p_0 = 0.003$ and $1 - p_1 = 0.1^{\ddagger}$

‡ Prochenka.et al. (2015) *Bioinformatics*.

- ► Simulated dataset similar to the *BANK1* example
- \triangleright One "null" covariate with no effect
- ► Two covariates with effects like those seen near *BANK1*
- \triangleright Simulate the observed methylated counts Y_{ii} from

Y^{*i*} | *S*^{*j*} ∼ Binomial(*S*^{*j*}, *p*₁) + Binomial(*X*^{*j*} − *S*^{*j*}, *p*₀).

Little bias in the curve estimates

Empirical confidence interval coverages

20

Kaiqiong Zhao | [Smooth modeling of DNA methylation](#page-0-0)

Accurate type I error rates

Simulation to evaluate power

22

$Z = 1$ curve in red (fixed) $Z = 0$ curve varied to give various sizes of differences

Increased power to detect DMRs

23

Maximum difference between curves

- \blacktriangleright With Error: $p_0 = 0.003, p_1 = 0.9$
- \triangleright No Error: $p_0 = 0, p_1 = 1$

SOMNiBUS: Summary

Advantages

 \triangleright Able to use data from many more CpGs where univariate analysis fails / power gain

- \triangleright One-stage nature
- \blacktriangleright Explicitly allows for experimental errors
- \blacktriangleright Inference!

SOMNiBUS: Summary

Advantages

 \triangleright Able to use data from many more CpGs where univariate analysis fails / power gain

24

- \triangleright One-stage nature
- \blacktriangleright Explicitly allows for experimental errors
- \blacktriangleright Inference!

Room for improvements

- \blacktriangleright Its underlying binomial assumption may be overly restrictive
- \blacktriangleright It is only applicable for data with negligible (within-group) variability (such as data from inbred animal or cell line experiments)

 \blacktriangleright Background and motivation

► [†]New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite Sequencing)

► [‡]New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)

 $[†]$ Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing</sup> derived measures of DNA methylation. *Biometrics*. Early-View

 $\frac{1}{4}$ Zhao, et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using quasi-binomial mixed models with smooth covariate effect estimates.

- \triangleright CARTaGENE is an ongoing population-based cohort, including ∼43,000 participants aged 40 to 69 years in Quebec
- \triangleright The level of anti-citrullinated protein antibodies (ACPA) is a marker of rheumatoid arthritis (RA) risk that often presents prior to any clinical manifestations
- \triangleright Aim: detect differentially methylated regions (DMRs) associated with ACPA

- \triangleright blood samples of ACPA positive and ACPA negative subjects
	- **covariate of primary interest**: ACPA status
	- □ **adjusting variables**: age, sex, smoking status and cell type composition(captured by the top 4 PCs)
- \triangleright two batches of data, referred to as data 1 and data 2, were collected in 2017 and 2019, respectively.

Observed dispersion in a targeted region

New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)

\blacktriangleright The same error model

$$
p_0 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 0)
$$

\n
$$
p_1 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 1).
$$

▶ A quasi-binomial mixed model with the **combination** of

 \Box a *multiplicative* dispersion, ϕ

 \Box an *additive* dispersion, \boldsymbol{u} , (i.e. a subject-specific RE)

$$
\log \frac{\pi_{ij}}{1-\pi_{ij}} = \beta_0(t_{ij}) + \beta_1(t_{ij})Z_{1i} + \beta_2(t_{ij})Z_{2i} + \ldots + \beta_P(t_{ij})Z_{Pi} + u_i,
$$

\n
$$
u_i \stackrel{iid}{\sim} N(0, \sigma_0^2)
$$

\n
$$
\text{Var}(S_{ij} | u_i) = \phi X_{ij} \pi_{ij} (1-\pi_{ij})
$$

 \triangleright Smoothness parameters to penalize the roughness of effect curves.

Kaiqiong Zhao | [Smooth modeling of DNA methylation](#page-0-0)

R package: <https://github.com/kaiqiong/SOMNiBUS>

RE term enables flexible dispersion patterns in a region

A byproduct of introducing a subject-level RE to a model with smooth covariate effects is a regional dispersion pattern of varying degree.

Technical details 1: difficulties

- \blacktriangleright Three sets of unknown parameters
	- \Box conditional mean parameters (REs): $\mathcal{B} = (\alpha, \bm u) \in \mathbb{R}^{N+\sum_0^{\rho}L_{\rho}}$
	- \square variance component parameters: $\Theta = (\lambda, \sigma_0^2) \in \mathbb{R}^{P+2}$
	- **multiplicative dispersion parameter**: φ
- \triangleright The conditional 'distribution' of $S \mid B$ is not available
- **I** Joint estimation of ϕ and **Θ** is required, as Laplace(ϕ , Θ; $\hat{\mathcal{B}}$) \neq *f*(ϕ)*q*(Θ)
- In the presence of data errors, one cannot easily estimate ϕ using the EM algorithm
	- \Box The estimating equation for ϕ is not linear in the unknown methylated counts *S*

Technical details 2: Estimation & Inference

 \triangleright Use the notation of extended quasi-likelihood to write the conditional quasi-likelihood function

32

 \triangleright Calculate Laplace-approximated marginal quais-likelihood function and its derivatives

\triangleright A hybrid ES algorithm

- \Box A plug-in estimator for ϕ by exploting its relationship with the dispersion for the contaminated outcome *Y*
- \Box Estimate ${\mathcal B}$ and Θ using ES iterations[‡] assuming ϕ is fixed and known

\blacktriangleright Inference using the observed quasi-Fisher information

[†] Efron (1986), Jorgensen (1987), McCullagh and Nelder (1989)

[‡] Elashoff and Ryan (2004)

Both additive and multiplicative dispersion is present in the data

The distribution of estimated ϕ and σ_0^2 for the 10,759 and 12,985 regions in dataset 1 and 2, respectively.

Kaiqiong Zhao | [Smooth modeling of DNA methylation](#page-0-0)

Ignoring either type of dispersion leads to inflated type I errors

dSOMNiBUS: $\phi > 0$, $\sigma_0^2 > 0$; multiplicative-dispersion-only model: $\phi > 0$, $\sigma_0^2 = 0$ SOMNiBUS: $\phi = 1$, $\sigma_0^2 = 0$; additive-dispersion-only model: $\phi = 1$, $\sigma_0^2 > 0$

Analytical v.s. bootstrap based p-values

35

Our inference procedure provides well-calibrated regional p-values.

Simulation

F Specify the same $\beta_p(t)$ and Z_p as paper 1.

$$
\blacktriangleright S_{ij} \sim \text{Beta-binomial}\left(\mu_{ij} = \pi_{ij}, \rho_{ij} = \frac{\phi - 1}{X_{ij} - 1}, \text{size} = X_{ij}\right)
$$

► In this way, we can always guarantee $\frac{\mathbb{V}\text{ar}(S_{ij})}{X_{ij}\pi_{ij}(1-\pi_{ij})} \equiv \phi.$

 $▶$ Recall: If *S* ∼ Beta-binomial (μ , ρ , *size* = *X*),

$$
\mathbb{V}\text{ar}(S) = \underbrace{[1 + (X - 1)\rho]}_{\text{dispersion}} \underbrace{X\mu(1 - \mu)}_{V(\mathbb{E}(Y))}.
$$

The impact of dispersion $p_0 = 0.003, p_1 = 0.9$

Type I Error $p_0 = 0.003, p_1 = 0.9$

Simulation to evaluate power

39

$Z = 1$ curve in red (fixed) $Z = 0$ curve varied to give various sizes of differences

Power without errors: $p_0 = 0, p_1 = 1$

Power with errors: $p_0 = 0.003, p_1 = 0.9$

- \triangleright an adequate representation of realistic dispersion trends in regional methylation data
- \triangleright well-founded theoretical properties accounting for all (known) sources of data variability and possible experimental errors
- \triangleright increased power; correct control of the type I error rate
- \triangleright methodologies can be generally applied to other types of count data
	- allele-specific gene expression (ASE) measured from RNA-seq data
	- any type of count data for a more comprehensive representation of dispersion
	- varying-coefficients models in other context, e.g. temporal trend

F integrate SNP information (automatic variable selection)

- \triangleright covariates (eg. disease status) may influence the variability/dispersion of DNA methylation (model $\phi(Z)$)
- \triangleright correlated samples (additional set of random effects)

sparseSOMNiBUS

R package under development: https://github.com/kaigiong/sparseSOMNiBU

methylation QTL mapping

Given: a set of CpGs & a set of nearby SNPs (*P* >> *N*) Output: genetic variants associated with methylation levels in the test region 44

sparseSOMNiBUS

 \triangleright a sparsity-smoothness penalty on each functional component $\beta_p(t)$

$$
J(\beta_{p}) = \lambda \sqrt{(1-\alpha)J_{1}(\beta_{p}) + \alpha J_{2}(\beta_{p})}
$$

where

$$
J_1(\beta_\rho) = \int (\beta_\rho(t))^2 dt
$$

$$
J_2(\beta_\rho) = \int (\beta_\rho''(t))^2 dt
$$

- \triangleright proximal gradient descent + backtracking line search (Rcpp)
- In tunning parameters λ and α , selected by cross-validation

A simple illustration of sparseSOMNiBUS

- \triangleright a methylation region with 123 CpG sites
- \triangleright 5 SNPs: 1 mQTL and 4 negative controls

under the best chosen $\alpha = 0.55$

Acknowledgement

46

- ▶ Dr. Celia Greenwood and Dr. Karim Oualkacha
- ▶ Dr. Lajmi Lakhal-Chaieb, Dr. Aurélie Labbe
- ▶ Dr. Yi Yang
- Dr. Kathleen Klein
- ▶ Dr. Sasha Bernatsky, Dr. Marie Hudson, Dr. Inés Colmegna
- \blacktriangleright the CARTaGENE study investigators
- \blacktriangleright the participants in the CARTaGENE study

Fonds de recherche Santé Québec **BE**

Thanks

Questions & Comments

Kaiqiong Zhao | [Smooth modeling of DNA methylation](#page-0-0)

SOMNiBUS† : Model

48

 \triangleright Assume **known error parameters** p_0 and p_1 ,

$$
p_0 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 0)
$$

\n
$$
p_1 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 1).
$$

 \blacktriangleright Specify the model

$$
S_{ij} | Z_i, X_{ij} \sim \text{Binomial}(X_{ij}, \pi_{ij})
$$

$$
\log \left\{ \frac{\pi_{ij}}{1 - \pi_{ij}} \right\} = \beta_0(t_{ij}) + \beta_1(t_{ij})Z_{1i} + \beta_2(t_{ij})Z_{2i} + \ldots + \beta_P(t_{ij})Z_{Pi},
$$

- **►** Consider basis expansion: $β_p(t_{ij}) = \sum_{l=1}^{l_p} α_{pl}B_l(t_{ij})$ for $p = 0, 1, \ldots P$.
- \blacktriangleright \pm Smoothness parameters to penalize the roughness of effect curves

$$
\mathcal{L}^{\text{Smooth}} = \sum_{p=0}^{P} \lambda_p \int (\beta_p''(t))^2 dt = \sum_{p=0}^{P} \lambda_p \alpha_p^T A_p \alpha_p = \alpha^T A_\lambda \alpha,
$$

 † R package: <https://github.com/kaiqiong/SOMNiBUS>. ‡ Wahba (1980), Parker and Rice (1985)

Technical detail 1: E-M algorithm

Complete joint likelihood

 \blacktriangleright [†]Random-effect view of the smoothness penalty: $\alpha \sim MVN(0, A_{\lambda}^{-})$

49

 $I^{\text{complete}}(\mathbf{S}; \alpha, \lambda) = I(\mathbf{S}; \alpha) - \frac{1}{2}$ $\frac{1}{2}\alpha^T A_\lambda \alpha + \frac{1}{2}$ $\frac{1}{2}$ log { $|A_{\lambda}|_{+}$ }

E step: Calculate $\eta_{ij}^{\star} = \mathbb{E}(S_{ij} | Y_{ijk} ; \alpha^{\star})$

M step: ‡ Maximize $Q(\alpha, \lambda | \alpha^*) = l(\eta^*; \alpha) - \frac{1}{2}$ $\frac{1}{2}\alpha^T A_\lambda \alpha + \frac{1}{2}$ $\frac{1}{2}$ log { $|A_\lambda|_+\}$

Estimate α given the value of λ : P-IRLS

$$
\widehat{\alpha}_{\lambda} = \underset{\alpha}{\text{argmax}} \left\{ I(\boldsymbol{\eta}^{\star}; \alpha) - \frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{A}_{\lambda} \boldsymbol{\alpha} \right\}
$$

Estimate λ : maximize the Laplace-approximated restrictive likelihood

$$
\mathcal{L}^M(\boldsymbol{\lambda}) = \int \exp\big\{Q(\boldsymbol{\alpha},\boldsymbol{\lambda} \mid \boldsymbol{\alpha}^{\star})\big\} \ d\boldsymbol{\alpha} \approx \mathsf{Laplace}(\boldsymbol{\lambda};\widehat{\boldsymbol{\alpha}}_{\boldsymbol{\lambda}}).
$$

† Wahba (1983), JRSSB; Silverman (1985), JRSSB. ‡ Wood (2011), JRSSB; R package mgcv

Technical detail 2: Inference

- \triangleright Conditional on the values of smoothing parameter λ
- **E** Estimate the variance of EM estimator $\hat{\alpha}$, **V**, using the observed Fisher information†
- **If** Hypothesis testing for a regional zero effect H_0 : $\beta_p(t) = 0$.
	- Wald-type statistic

$$
T_{p} = \widehat{\alpha_{p}}^{T} \{ V_{p} \}^{-1} \widehat{\alpha_{p}} \sim \chi_{\tau_{p}}^{2}
$$

50

• Penalization affects effective degree of freedom[‡]; $\tau_p < L_p = \text{dim}(\alpha_{\bm p})$

$$
\tau_p = \sum_{l=a_p}^{b_p} (2\bm{F} - \bm{F}\bm{F})_{(l,l)}, \text{ for } p = 0, 1, \ldots P,
$$

• *F* is the 'hat' matrix and has the form $\mathbf{F} = (\mathbb{X}^T \widehat{W} \mathbb{X} + \mathbf{A}_\mathbb{X})^{-1} \mathbb{X}^T \widehat{W} \mathbb{X}$

[†] Oakes, D. (1999) Direct calculation of the information matrix via the EM. JRSSB

[‡] Wood, S.N. (2013) On p-values for smooth components of an extended generalized additive model. Biometrika

dSOMNiBUS: Estimation

► Random-effect view of the smoothness penalty: $\alpha \sim MVN(0, A_λ⁻)$

51

- \blacktriangleright conditional mean parameters (REs): $\mathcal{B} = (\alpha, \boldsymbol{u}) \in \mathbb{R}^{N + \sum_{0}^{P} L_{P}}$
- \triangleright variance component parameters: **Θ** = $(\lambda, \sigma_0^2) \in \mathbb{R}^{P+2}$
- **Figure in the multiplicative dispersion parameter:** ϕ

Complete joint log-quasi-likelihood function

$$
q\ell^{(\mathbf{S},\mathbf{B})}(\mathbf{B},\phi,\mathbf{\Theta}) = q\ell^{(\mathbf{S}|\mathbf{B})}(\mathbf{B},\phi) - \frac{1}{2}\alpha^T \mathbf{A}_{\lambda}\alpha - \frac{1}{2\sigma_0^2}\mathbf{u}^T\mathbf{u}
$$

$$
+ \underbrace{\frac{1}{2}\log{\{|\mathbf{A}_{\lambda}|_{+}\}} + \frac{N}{2}\log{\left(1/\sigma_0^2\right)}}_{1/2\log{\{|\mathbf{\Sigma}_{\Theta}/\phi|_{+}\}}}
$$

52

Conditional quasi-likelihood function

$$
qL^{(\mathcal{S}|\mathcal{B})}(\mathcal{B},\phi) \propto \exp\left\{-\frac{1}{2\phi}\sum_{i,j}d_{ij}\left(S_{ij},\pi_{ij}\right)-\frac{M}{2}\log\phi\right\},\,
$$

$$
\blacktriangleright \ d_{ij}(S_{ij}, \pi_{ij}) = -2 \int_{S_{ij}/X_{ij}}^{\pi_{ij}} \frac{S_{ij} - X_{ij}\pi_{ij}}{\pi_{ij}(1 - \pi_{ij})} d\pi_{ij}
$$
 is the quasi-deviance function

- \triangleright This is the extended quasi-likelihood for the joint parameter (\mathcal{B}, ϕ)
- It exhibits the properties of log-likelihood, with respect to both $\mathcal B$ (exact) and ϕ (approximate)
- **►** [†]The assumptions required are that ϕ be small and that $\kappa_r = O(\phi^{r-1})$

[†] Efron (1986), Jorgensen (1987), McCullagh and Nelder (1989)

dSOMNiBUS: Estimation

 \blacktriangleright Marginal quasi-likelihood function

$$
qL^M(\phi,\Theta) = \int \exp\left\{q\ell^{(\mathcal{S},\mathcal{B})}(\mathcal{B},\phi,\Theta)\right\}d\mathcal{B} \approx \text{Laplace}(\phi,\Theta;\widehat{\mathcal{B}}) \neq f(\phi)g(\Theta).
$$

53

▶ A similar E-M algorithm

Initialize $\Theta^{(0)},\phi^{(0)},\mathcal{B}^{(0)}$ (estimates ignoring errors); Choose $\varepsilon = 10^{-6}$; Set $\ell = 0$; **repeat** • E step: $\eta_{ij}^{(\ell)} = \mathbb{E}(S_{ij} | Y_{ij}; \mathcal{B}^{(\ell)});$ • M step: $(\mathcal{B}^{(\ell)}, \phi^{(\ell)}, \Theta^{(\ell)}) = \text{argmax}_{\mathcal{B}, \phi, \Theta} \ell^{\text{Joint}} (\mathcal{B}, \phi, \Theta; \eta_{ij}^{(\ell)})$. Specifically **repeat** \bullet Solve $\boldsymbol{U}(\mathcal{B}; \Theta^{(s)}) = \boldsymbol{0}$ to obtain $\mathcal{B}^{(s)}$ using data $\eta_{ij}^{(\ell)}$; • Newton's update for the Laplace approximated marginal likelihood evaluated at data $\eta_{\tilde{q}}^{(\ell)}$: $(\phi, \Theta)^{(s+1)} = (\phi, \Theta)^{(s)} - \left[\nabla^2 \text{Laplace}(\mathcal{B}^{(s)})\right]^{-1} \nabla \text{Laplace}(\mathcal{B}^{(s)})\Big|;$ $s \leftarrow s + 1$; **until** $\|\mathcal{B}^{(s)} - \mathcal{B}^{(s-1)}\|_{2} < \varepsilon$; $\ell \leftarrow \ell + 1;$ **until** $\|\mathcal{B}^{(\ell)} - \mathcal{B}^{(\ell-1)}\|_2 < \varepsilon$; Return $\Theta^{(\ell)}, \mathcal{B}^{(\ell)}, \phi^{(\ell)}$;

- **Estimating** ϕ
	- ► Likelihood-based estimator
	- \blacktriangleright Moment-based estimator (better)

Inference for smooth covariate effects

Estimate the variance of EM estimator $\hat{\alpha}$, **V**, using the observed

- (quasi-)Fisher information†
- **If** Hypothesis testing for a regional zero effect $H_0: \beta_p(t) = 0$.
	- Regional statistic

$$
T_{\rho} = \frac{\widehat{\alpha}_{\rho}^{\mathsf{T}} \left\{ \widehat{\boldsymbol{V}}_{\boldsymbol{\rho}} \right\}^{-1} \widehat{\alpha}_{\rho}}{\tau_{\rho}} \sim F_{\tau_{\rho}, M - \tau}
$$

- τ_p : EDF for smooth term $\beta_p(t)$. τ : total EDF of the model
- This F null distribution relies on the assumption that $(M \tau)\hat{\phi}/\phi \sim \chi^2_{M-\tau}$, which is approximately true for moment-based dispersion estimator

[†]Elashoff and Ryan (2004) An EM algorithm for estimating equations. Journal of Computational and Graphical Statistics