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Overview

Please feel free to interrupt and ask questions at any time during the
talk!

I Background and motivation

I †New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite
Sequencing)

I ‡New method 2: dSOMNiBUS (dispersion-adjusted SmOoth ModeliNg
of BisUlfite Sequencing)

I ?New method 3: sparseSOMNiBUS (SOMNiBUS with variable selection)

† Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing
derived measures of DNA methylation. Biometrics. Early-View
‡ Zhao, et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using
quasi-binomial mixed models with smooth covariate effect estimates.
? Zhao, et.al (2020+). In preparation
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Epigenetics and DNA Methylation

I change gene expression
without changing DNA
sequence

I can be altered by age, diet,
stress and environmental
exposures

I Localized abnormal
methylation is a characteristic
feature of many diseases
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Bisulfite Sequencing & Methylation

https://www.diagenode.com/en/applications/
dna-bisulfite-conversion

Methylated cytosines are not
converted by bisulfite treatment
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Sequencing-derived DNA methylation data

CpG 1 CpG 2 CpG 3 CpG 4 CpG 5
Methylated Counts (Y) 0 3 3 1 0
Read depth (X) 1 3 4 4 2
Proportion (Y/X) 0 1 0.75 0.25 0

http://kkorthauer.org/talks/korthauer_aisc_2018_static.pdf
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Motivating datasets
Methylation profiles of Rheumatoid Arthritis (RA) patients and controls
(from our collaborator Dr. Marie Hudson)

I Targeted Custom Capture
Bisulfite Sequencing

• predefined genomic regions
• 5 million CpGs

I Cell-separated blood samples

Monocytes T cells
RA 10 12

Controls 8 13

I Small region on chromosome 4
near BANK1

I 123 CpGs
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Goal

Find associations between
I methylation patterns in each targeted region, and
I phenotypes or covariates
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Challenges / Opportunities

• Read depth at CpGs varies substantially
I Need a model that can use all available data

• Cell-type mixture affects observed methylation levels
I Adjust for this in model

• Sequencing errors, e.g. bisulfite conversion error
I Build a model allowing for error

• Local correlations in methylation levels
I Opportunity for imputing missing data or poorly measured signals
I Opportunity for modelling smooth effects along the genome

Kaiqiong Zhao | Smooth modeling of DNA methylation



8

Existing methods appropriate for regions

Method regional one-
stage

count-
based

read-depth
variability

adjust for
confounding

experimental
errors

SOMNiBUS X X X X X X
BSmooth X X–

SMSC X X– X
dmrseq X X X
Biseq X X– X
GlobalTest X X X

BSmooth: Hansen, 2012
SMSC: Lakhal-Chaieb, 2017
dmrseq: Korthauer, 2018
BiSeq: Hebestreit, 2013
GlobalTest: Goeman, 2006
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An example of two-stage method
Raw data & per-sample smoothed estimates

Results from SMSC (Lakhal-Chaieb, 2017)

Genomic position (in bp)
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SOMNiBUS
SmOoth ModeliNg of BisUlfite Sequencing

Method regional one-
stage

count-
based

read-depth
variability

adjust for
confounding

experimental
errors

SOMNiBUS X X X X X X
BSmooth X X–

SMSC X X– X
dmrseq X X X
Biseq X X– X
GlobalTest X X X

Motivation: a novel one-stage method that
I collapses smoothing and testing steps into a single step
I allows for experimental errors, variable read depths and test

samples with a mixture of cell types
I provides rigorous uncertainty assessment for differentially

methylated regions
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Overview

I Background and motivation

I †New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite
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‡ Zhao, et.al (2020+). Detecting differentially methylated regions in bisulfite sequencing data using
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Notations

I Xij : total number of reads aligned to CpG j from sample i

I Yij : observed methylated counts at CpG j for sample i . Yij =
∑Xij

k=1 Yijk

I Sij : true methylated counts at CpG j for sample i . Sij =
∑Xij

k=1 Sijk

I tij : the genome position (in bp) for sample i at CpG j
I Z1i ,Z2i , . . .ZPi are the P covariates.
I πij : the methylation proportion parameter for sample i , CpG j
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SOMNiBUS†: Model

I Assume known error parameters p0 and p1,

p0 = P(Yijk = 1 | Sijk = 0)

p1 = P(Yijk = 1 | Sijk = 1).

I Specify the model

Sij | Zi ,Xij ∼ Binomial(Xij , πij)

log
{

πij

1− πij

}
= β0(tij) + β1(tij)Z1i + β2(tij)Z2i + . . .+ βP(tij)ZPi ,

I Smooth curves along the genome for
I Overall methylation
I Covariate effects

†R package: https://github.com/kaiqiong/SOMNiBUS.
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Technical details 1: splines

I Use splines for smoothing

βp(tij ) =
Lp∑
l=1

αpl B
(p)
l (tij ) for p = 0, 1, . . .P.

I Penalize roughness of effect curves βp(tij).

LPenalization =
P∑

p=0

λp

∫ (
β
′′
p (t)

)2
dt =

P∑
p=0

λpα
T
p Apαp = αT Aλα,

{λ0, λ1, . . . λP} are the smoothing parameters.

I Penalties go onto second derivatives
I P + 1 penalization parameters for P covariates
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Technical details 2: E-M algorithm

E step: Calculate η?ij = E(Sij | Yijk ;α?)

M step: ‡Maximize Q(α,λ | α?) = l(η?;α)− 1
2
αT Aλα+

1
2

log {|Aλ|+}

I Estimate α given the value of λ: P-IRLS

α̂λ = argmax
α

{
l(η?;α)−

1
2
α

T Aλα
}

I Estimate λ: maximize the Laplace-approximated restrictive (or marginal)
likelihood

LM (λ) =

∫
exp
{

Q(α,λ | α?)
}

dα ≈ Laplace(λ; α̂λ).

‡ Wood (2011), JRSSB; R package mgcv
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Technical details 3: inference

I Pointwise confidence intervals

I Regional tests for non-zero covariate effects
I for each covariate, or
I for the combined effects of multiple covariates

I Penalization affects effective degree of freedom
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Results in BANK1 region
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p = 1.11e − 16 p = 6.37e − 218
I Error parameters p0 = 0.003 and 1− p1 = 0.1‡

‡ Prochenka.et al. (2015) Bioinformatics.
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Simulation study

I Simulated dataset similar to the BANK1 example

I One “null” covariate with no effect

I Two covariates with effects like those seen near BANK1

I Simulate the observed methylated counts Yij from

Yij | Sij ∼ Binomial(Sij ,p1) + Binomial(Xij − Sij ,p0).
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Little bias in the curve estimates
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Empirical confidence interval coverages
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Accurate type I error rates
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Simulation to evaluate power
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Increased power to detect DMRs

0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With Error

Maximum Deviance

P
ow

er

SOMNiBUS
GlobalTest
dmrseq
BSmooth
SMSC
BiSeq

0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No Error

Maximum Deviance
P

ow
er

SOMNiBUS
GlobalTest
dmrseq
BSmooth
SMSC
BiSeq

Maximum difference between curves

I With Error: p0 = 0.003,p1 = 0.9
I No Error: p0 = 0,p1 = 1
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SOMNiBUS: Summary

Advantages
I Able to use data from many more CpGs where univariate

analysis fails / power gain
I One-stage nature
I Explicitly allows for experimental errors
I Inference!

Room for improvements
I Its underlying binomial assumption may be overly restrictive

I It is only applicable for data with negligible (within-group)
variability (such as data from inbred animal or cell line
experiments)

Kaiqiong Zhao | Smooth modeling of DNA methylation
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Overview

I Background and motivation

I †New method 1: SOMNiBUS (SmOoth ModeliNg of BisUlfite
Sequencing)

I ‡New method 2: dSOMNiBUS (dispersion-adjusted SmOoth
ModeliNg of BisUlfite Sequencing)

† Zhao, et.al (2020). A novel statistical method for modeling covariate effects in bisulfite sequencing
derived measures of DNA methylation. Biometrics. Early-View
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Motivating datasets
(from our collaborator Dr. Sasha Bernatsky)

I CARTaGENE is an ongoing population-based cohort, including
∼43,000 participants aged 40 to 69 years in Quebec

I The level of anti-citrullinated protein antibodies (ACPA) is a
marker of rheumatoid arthritis (RA) risk that often presents prior
to any clinical manifestations

I Aim: detect differentially methylated regions (DMRs) associated
with ACPA

Kaiqiong Zhao | Smooth modeling of DNA methylation
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Motivating datasets
(from our collaborator Dr. Sasha Bernatsky)

I blood samples of ACPA positive and ACPA negative subjects
� covariate of primary interest: ACPA status
� adjusting variables: age, sex, smoking status and cell type

composition(captured by the top 4 PCs)

I two batches of data, referred to as data 1 and data 2, were
collected in 2017 and 2019, respectively.

data 1
(N =116 )

data 2
(N = 102)

ACPA Positives 55 48
ACPA Negatives 61 54
Number of targeted regions
(with at least 50 CpGs) 10,759 12,985

Kaiqiong Zhao | Smooth modeling of DNA methylation
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Observed dispersion in a targeted region
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New method 2: dSOMNiBUS
(dispersion-adjusted SmOoth ModeliNg of BisUlfite Sequencing)

I The same error model

p0 = P(Yijk = 1 | Sijk = 0)

p1 = P(Yijk = 1 | Sijk = 1).

I A quasi-binomial mixed model with the combination of
� a multiplicative dispersion, φ
� an additive dispersion, u, (i.e. a subject-specific RE)

log
πij

1− πij
= β0(tij) + β1(tij)Z1i + β2(tij)Z2i + . . .+ βP(tij)ZPi + ui ,

ui
iid∼ N(0, σ2

0)

Var(Sij | ui) = φXijπij(1− πij)

I Smoothness parameters to penalize the roughness of effect curves.

R package: https://github.com/kaiqiong/SOMNiBUS
Kaiqiong Zhao | Smooth modeling of DNA methylation
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RE term enables flexible dispersion patterns
in a region

A byproduct of introducing a subject-level RE to a model with smooth
covariate effects is a regional dispersion pattern of varying degree.

(A) (B)
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Multiplicative dispersion 
with subject−level RE

Var(Sij ) ≈ Xijπ
?
ij (1− π

?
ij )
{
φ+ σ2

0
(
Xij − φ

)
π?ij (1− π

?
ij )
}

Kaiqiong Zhao | Smooth modeling of DNA methylation
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Technical details 1: difficulties

I Three sets of unknown parameters

� conditional mean parameters (REs): B = (α,u) ∈ RN+
∑P

0 Lp

� variance component parameters: Θ = (λ, σ2
0) ∈ RP+2

� multiplicative dispersion parameter: φ

I The conditional ‘distribution’ of S | B is not available

I Joint estimation of φ and Θ is required, as Laplace(φ,Θ; B̂) 6= f (φ)g(Θ)

I In the presence of data errors, one cannot easily estimate φ using the
EM algorithm
� The estimating equation for φ is not linear in the unknown

methylated counts S

Kaiqiong Zhao | Smooth modeling of DNA methylation
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Technical details 2: Estimation & Inference

I Use the notation of extended quasi-likelihood to write the conditional
quasi-likelihood function

I Calculate Laplace-approximated marginal quais-likelihood function and
its derivatives

I A hybrid ES algorithm

� A plug-in estimator for φ by exploting its relationship with the
dispersion for the contaminated outcome Y

� Estimate B and Θ using ES iterations‡ assuming φ is fixed and
known

I Inference using the observed quasi-Fisher information

† Efron (1986), Jorgensen (1987), McCullagh and Nelder (1989)
‡ Elashoff and Ryan (2004)

Kaiqiong Zhao | Smooth modeling of DNA methylation
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Both additive and multiplicative dispersion
is present in the data

D
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D
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Ignoring either type of dispersion leads
to inflated type I errors
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Analytical v.s. bootstrap based p-values
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Our inference procedure provides well-calibrated regional p-values.
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Simulation

I Specify the same βp(t) and Zp as paper 1.

I Sij ∼ Beta-binomial
(
µij = πij , ρij =

φ− 1
Xij − 1

, size = Xij

)

I In this way, we can always guarantee
Var(Sij)

Xijπij(1− πij)
≡ φ.

I Recall: If S ∼ Beta-binomial (µ, ρ, size = X),

Var(S) = [1 + (X − 1)ρ]︸ ︷︷ ︸
dispersion

Xµ(1− µ)︸ ︷︷ ︸
V (E(Y ))

.
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The impact of dispersion
p0 = 0.003, p1 = 0.9
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Type I Error
p0 = 0.003, p1 = 0.9
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Simulation to evaluate power
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Power without errors: p0 = 0,p1 = 1
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Power with errors: p0 = 0.003,p1 = 0.9
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Summary

I an adequate representation of realistic dispersion trends in regional
methylation data

I well-founded theoretical properties accounting for all (known) sources of
data variability and possible experimental errors

I increased power; correct control of the type I error rate

I methodologies can be generally applied to other types of count data

• allele-specific gene expression (ASE) measured from RNA-seq
data

• any type of count data for a more comprehensive representation of
dispersion

• varying-coefficients models in other context, e.g. temporal trend
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Next step plans

I integrate SNP information (automatic variable selection)

I covariates (eg. disease status) may influence the variability/dispersion
of DNA methylation (model φ(Z ))

I correlated samples (additional set of random effects)
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sparseSOMNiBUS
R package under development: https://github.com/kaiqiong/sparseSOMNiBUS

methylation QTL mapping

Given: a set of CpGs & a set of nearby SNPs (P >> N)
Output: genetic variants associated with methylation levels in the test region

sparseSOMNiBUS

I a sparsity-smoothness penalty on each functional component βp(t)

J(βp) = λ
√

(1− α)J1(βp) + αJ2(βp)

where
J1(βp) =

∫
(βp(t))2 dt

J2(βp) =

∫ (
β′′p (t)

)2 dt

I proximal gradient descent + backtracking line search (Rcpp)
I tunning parameters λ and α, selected by cross-validation

Kaiqiong Zhao | Smooth modeling of DNA methylation
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A simple illustration of sparseSOMNiBUS

I a methylation region with 123 CpG sites
I 5 SNPs: 1 mQTL and 4 negative controls
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under the best chosen α = 0.55
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Thanks
Questions & Comments
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SOMNiBUS†: Model

I Assume known error parameters p0 and p1,

p0 = P(Yijk = 1 | Sijk = 0)

p1 = P(Yijk = 1 | Sijk = 1).

I Specify the model

Sij | Zi ,Xij ∼ Binomial(Xij , πij)

log
{

πij

1− πij

}
= β0(tij) + β1(tij)Z1i + β2(tij)Z2i + . . .+ βP(tij)ZPi ,

I Consider basis expansion: βp(tij) =
∑Lp

l=1 αplBl(tij) for p = 0, 1, . . .P.

I ‡Smoothness parameters to penalize the roughness of effect curves

LSmooth =
P∑

p=0

λp

∫ (
β′′p (t)

)2 dt =
P∑

p=0

λpα
T
p Apαp = αT Aλα,

†R package: https://github.com/kaiqiong/SOMNiBUS. ‡Wahba (1980), Parker and Rice (1985)
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Technical detail 1: E-M algorithm

Complete joint likelihood
I †Random-effect view of the smoothness penalty: α ∼ MVN(0,Aλ−)

I lcomplete(S;α,λ) = l(S;α)−
1
2
αT Aλα +

1
2

log {|Aλ|+}

E step: Calculate η?ij = E(Sij | Yijk ;α?)

M step: ‡Maximize Q(α,λ | α?) = l(η?;α)−
1
2
αT Aλα +

1
2

log {|Aλ|+}

I Estimate α given the value of λ: P-IRLS

α̂λ = argmax
α

{
l(η?;α)−

1
2
α

T Aλα
}

I Estimate λ: maximize the Laplace-approximated restrictive likelihood

LM (λ) =

∫
exp
{

Q(α,λ | α?)
}

dα ≈ Laplace(λ; α̂λ).

† Wahba (1983), JRSSB; Silverman (1985), JRSSB. ‡ Wood (2011), JRSSB; R package mgcv
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Technical detail 2: Inference

I Conditional on the values of smoothing parameter λ

I Estimate the variance of EM estimator α̂, V , using the observed Fisher
information†

I Hypothesis testing for a regional zero effect H0 : βp(t) = 0.
• Wald-type statistic

Tp = α̂p
T {Vp}−1 α̂p ∼ χ2

τp

• Penalization affects effective degree of freedom‡; τp < Lp = dim(αp)

τp =

bp∑
l=ap

(2F − FF )(l,l) , for p = 0, 1, . . .P,

• F is the ‘hat’ matrix and has the form F = (XT ŴX+ A
λ̂
)−1XT ŴX

† Oakes, D. (1999) Direct calculation of the information matrix via the EM. JRSSB
‡ Wood, S.N. (2013) On p-values for smooth components of an extended generalized additive model. Biometrika
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dSOMNiBUS: Estimation

I Random-effect view of the smoothness penalty: α ∼ MVN(0,Aλ−)

I conditional mean parameters (REs): B = (α,u) ∈ RN+
∑P

0 Lp

I variance component parameters: Θ = (λ, σ2
0) ∈ RP+2

I multiplicative dispersion parameter: φ

Complete joint log-quasi-likelihood function

q`(S,B)(B, φ,Θ) = ql (S|B)(B, φ)−1
2
αT Aλα−

1
2σ2

0
uT u︸ ︷︷ ︸

− 1
2φBT ΣΘB

+
1
2

log {|Aλ|+}+
N
2

log
(

1/σ2
0

)
︸ ︷︷ ︸

1/2 log{|ΣΘ/φ|+}
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dSOMNiBUS: Estimation

Conditional quasi-likelihood function

qL(S|B)(B, φ) ∝ exp

− 1
2φ

∑
i,j

dij (Sij , πij)−
M
2

logφ

 ,

I dij(Sij , πij) = −2
∫
πij

Sij/Xij

Sij − Xijπij

πij(1− πij)
dπij is the quasi-deviance function

I This is the extended quasi-likelihood for the joint parameter (B, φ)
I It exhibits the properties of log-likelihood, with respect to both B (exact)

and φ (approximate)
I †The assumptions required are that φ be small and that κr = O(φr−1)

† Efron (1986), Jorgensen (1987), McCullagh and Nelder (1989)

Kaiqiong Zhao | Smooth modeling of DNA methylation



53

dSOMNiBUS: Estimation

I Marginal quasi-likelihood function

qLM(φ,Θ) =

∫
exp

{
q`(S,B)(B, φ,Θ)

}
dB ≈ Laplace(φ,Θ; B̂) 6= f (φ)g(Θ).

I A similar E-M algorithm
Initialize Θ(0), φ(0),B(0) (estimates ignoring errors); Choose ε = 10−6; Set ` = 0;
repeat

• E step: η(`)ij = E(Sij | Yij ;B(`));

• M step: (B(`),φ(`),Θ(`)) = argmaxB,φ,Θ `
Joint

(
B, φ,Θ; η

(`)
ij

)
. Specifically

repeat

• Solve U(B;Θ(s)) = 0 to obtain B(s) using data η(`)ij ;

• Newton’s update for the Laplace approximated marginal likelihood
evaluated at data η(`)ij :

(φ,Θ)(s+1) = (φ,Θ)(s) −
[
∇2Laplace(B(s))

]−1
∇Laplace(B(s)) ;

s ← s + 1;
until ‖B(s) −B(s−1)‖2 < ε;
`← `+ 1;

until ‖B(`) −B(`−1)‖2 < ε;
Return Θ(`),B(`), φ(`) ;

I Estimating φ
I Likelihood-based estimator
I Moment-based estimator (better)
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Inference for smooth covariate effects

I Estimate the variance of EM estimator α̂, V , using the observed
(quasi-)Fisher information†

I Hypothesis testing for a regional zero effect H0 : βp(t) = 0.
• Regional statistic

Tp =
α̂T

p

{
V̂p

}−1
α̂p

τp
∼ Fτp,M−τ

• τp : EDF for smooth term βp(t). τ : total EDF of the model

• This F null distribution relies on the assumption that (M − τ)φ̂/φ ∼ χ2
M−τ ,

which is approximately true for moment-based dispersion estimator

†Elashoff and Ryan (2004) An EM algorithm for estimating equations. Journal of Computational and Graphical Statistics
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